Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(4): 107164, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38484798

RESUMEN

O-glycosylation is a conserved posttranslational modification that impacts many aspects of organismal viability and function. Recent studies examining the glycosyltransferase Galnt11 demonstrated that it glycosylates the endocytic receptor megalin in the kidneys, enabling proper binding and reabsorption of ligands, including vitamin D-binding protein (DBP). Galnt11-deficient mice were unable to properly reabsorb DBP from the urine. Vitamin D plays an essential role in mineral homeostasis and its deficiency is associated with bone diseases such as rickets, osteomalacia, and osteoporosis. We therefore set out to examine the effects of the loss of Galnt11 on vitamin D homeostasis and bone composition. We found significantly decreased levels of serum 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D, consistent with decreased reabsorption of DBP. This was accompanied by a significant reduction in blood calcium levels and a physiologic increase in parathyroid hormone (PTH) in Galnt11-deficient mice. Bones in Galnt11-deficient mice were smaller and displayed a decrease in cortical bone accompanied by an increase in trabecular bone and an increase in a marker of bone formation, consistent with PTH-mediated effects on bone. These results support a unified model for the role of Galnt11 in bone and mineral homeostasis, wherein loss of Galnt11 leads to decreased reabsorption of DBP by megalin, resulting in a cascade of disrupted mineral and bone homeostasis including decreased circulating vitamin D and calcium levels, a physiological increase in PTH, an overall loss of cortical bone, and an increase in trabecular bone. Our study elucidates how defects in O-glycosylation can influence vitamin D and mineral homeostasis and the integrity of the skeletal system.


Asunto(s)
Huesos , Homeostasis , Polipéptido N-Acetilgalactosaminiltransferasa , Vitamina D , Animales , Masculino , Ratones , Huesos/anatomía & histología , Huesos/química , Huesos/metabolismo , Calcio/metabolismo , Glicosilación , Homeostasis/genética , Hormona Paratiroidea/metabolismo , Vitamina D/metabolismo , Vitamina D/análogos & derivados , Proteína de Unión a Vitamina D/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(6): e2314309121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38285943

RESUMEN

Mucins are large, highly glycosylated extracellular matrix proteins that line and protect epithelia of the respiratory, digestive, and urogenital tracts. Previous work has shown that mucins form large, interconnected polymeric networks that mediate their biological functions once secreted. However, how these large matrix molecules are compacted and packaged into much smaller secretory granules within cells prior to secretion is largely unknown. Here, we demonstrate that a small cysteine-rich adaptor protein is essential for proper packaging of a secretory mucin in vivo. This adaptor acts via cysteine bonding between itself and the cysteine-rich domain of the mucin. Loss of this adaptor protein disrupts mucin packaging in secretory granules, alters the mobile fraction within granules, and results in granules that are larger, more circular, and more fragile. Understanding the factors and mechanisms by which mucins and other highly glycosylated matrix proteins are properly packaged and secreted may provide insight into diseases characterized by aberrant mucin secretion.


Asunto(s)
Cisteína , Mucinas , Mucinas/metabolismo , Cisteína/metabolismo , Transporte Biológico , Vesículas Secretoras/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(43): e2303703120, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37862385

RESUMEN

The family of GalNAc-Ts (GalNAcpolypeptide:N-Acetylgalactosaminyl transferases) catalyzes the first committed step in the synthesis of O-glycans, which is an abundant and biologically important protein modification. Abnormalities in the activity of individual GalNAc-Ts can result in congenital disorders of O-glycosylation (CDG) and influence a broad array of biological functions. How site-specific O-glycans regulate biology is unclear. Compiling in vivo O-glycosites would be an invaluable step in determining the function of site-specific O-glycans. We integrated chemical and enzymatic conditions that cleave O-glycosites, a higher-energy dissociation product ions-triggered electron-transfer/higher-energy collision dissociation mass spectrometry (MS) workflow and software to study nine mouse tissues and whole blood. We identified 2,154 O-glycosites from 595 glycoproteins. The O-glycosites and glycoproteins displayed consensus motifs and shared functions as classified by Gene Ontology terms. Limited overlap of O-glycosites was observed with protein O-GlcNAcylation and phosphorylation sites. Quantitative glycoproteomics and proteomics revealed a tissue-specific regulation of O-glycosites that the differential expression of Galnt isoenzymes in tissues partly contributes to. We examined the Galnt2-null mouse model, which phenocopies congenital disorder of glycosylation involving GALNT2 and revealed a network of glycoproteins that lack GalNAc-T2-specific O-glycans. The known direct and indirect functions of these glycoproteins appear consistent with the complex metabolic phenotypes observed in the Galnt2-null animals. Through this study and interrogation of databases and the literature, we have compiled an atlas of experimentally identified mouse O-glycosites consisting of 2,925 O-glycosites from 758 glycoproteins.


Asunto(s)
Glicoproteínas , Enfermedades Metabólicas , Animales , Ratones , Glicosilación , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteoma/metabolismo , Polisacáridos , Polipéptido N-Acetilgalactosaminiltransferasa
4.
Glycobiology ; 33(6): 476-489, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37115803

RESUMEN

The COVID-19 global pandemic has underscored the need to understand how viruses and other pathogens are able to infect and replicate within the respiratory system. Recent studies have highlighted the role of highly O-glycosylated mucins in the protection of the respiratory system as well as how mucin-type O-glycosylation may be able to modify viral infectivity. Therefore, we set out to identify the specific genes controlling mucin-type O-glycosylation throughout the mouse respiratory system as well as determine how their expression and the expression of respiratory mucins is influenced by infection or injury. Here, we show that certain mucins and members of the Galnt family are abundantly expressed in specific respiratory tissues/cells and demonstrate unique patterns of O-glycosylation across diverse respiratory tissues. Moreover, we find that the expression of certain Galnts and mucins is altered during lung infection and injury in experimental mice challenged with infectious agents, toxins, and allergens. Finally, we examine gene expression changes of Galnts and mucins in a mouse model of SARS-CoV-2 infection. Our work provides foundational knowledge regarding the specific expression of Galnt enzyme family members and mucins throughout the respiratory system, and how their expression is altered upon lung infection and injury.


Asunto(s)
COVID-19 , Mucinas , Animales , Ratones , Mucinas/genética , Mucinas/metabolismo , Glicosilación , COVID-19/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Sistema Respiratorio/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(43): e2209750119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252017

RESUMEN

Mucins are large, highly glycosylated transmembrane and secreted proteins that line and protect epithelial surfaces. However, the details of mucin biosynthesis and packaging in vivo are largely unknown. Here, we demonstrate that multiple distinct mucins undergo intragranular restructuring during secretory granule maturation in vivo, forming unique structures that are spatially segregated within the same granule. We further identify temporally-regulated genes that influence mucin restructuring, including those controlling pH (Vha16-1), Ca2+ ions (fwe) and Cl- ions (Clic and ClC-c). Finally, we show that altered mucin glycosylation influences the dimensions of these structures, thereby affecting secretory granule morphology. This study elucidates key steps and factors involved in intragranular, rather than intergranular segregation of mucins through regulated restructuring events during secretory granule maturation. Understanding how multiple distinct mucins are efficiently packaged into and secreted from secretory granules may provide insight into diseases resulting from defects in mucin secretion.


Asunto(s)
Mucinas , Vesículas Secretoras , Gránulos Citoplasmáticos/metabolismo , Glicosilación , Mucinas/metabolismo , Vesículas Secretoras/metabolismo
6.
Adv Drug Deliv Rev ; 184: 114182, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35278522

RESUMEN

The secreted mucus layer that lines and protects epithelial cells is conserved across diverse species. While the exact composition of this protective layer varies between organisms, certain elements are conserved, including proteins that are heavily decorated with N-acetylgalactosamine-based sugars linked to serines or threonines (O-linked glycosylation). These heavily O-glycosylated proteins, known as mucins, exist in many forms and are able to form hydrated gel-like structures that coat epithelial surfaces. In vivo studies in diverse organisms have highlighted the importance of both the mucin proteins as well as their constituent O-glycans in the protection and health of internal epithelia. Here, we summarize in vivo approaches that have shed light on the synthesis and function of these essential components of mucus.


Asunto(s)
Mucinas , Moco , Células Epiteliales/metabolismo , Glicosilación , Humanos , Mucinas/química , Mucinas/metabolismo , Moco/metabolismo , Polisacáridos
8.
Mol Metab ; 60: 101472, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35304331

RESUMEN

OBJECTIVE: GALNT2, encoding polypeptide N-acetylgalactosaminyltransferase 2 (GalNAc-T2), was initially discovered as a regulator of high-density lipoprotein metabolism. GalNAc-T2 is known to exert these effects through post-translational modification, i.e., O-linked glycosylation of secreted proteins with established roles in plasma lipid metabolism. It has recently become clear that loss of GALNT2 in rodents, cattle, nonhuman primates, and humans should be regarded as a novel congenital disorder of glycosylation that affects development and body weight. The role of GALNT2 in metabolic abnormalities other than plasma lipids, including insulin sensitivity and energy homeostasis, is poorly understood. METHODS: GWAS data from the UK Biobank was used to study variation in the GALNT2 locus beyond changes in high-density lipoprotein metabolism. Experimental data were obtained through studies in Galnt2-/- mice and wild-type littermates on both control and high-fat diet. RESULTS: First, we uncovered associations between GALNT2 gene variation, adiposity, and body mass index in humans. In mice, we identify the insulin receptor as a novel substrate of GalNAc-T2 and demonstrate that Galnt2-/- mice exhibit decreased adiposity, alterations in insulin signaling and a shift in energy substrate utilization in the inactive phase. CONCLUSIONS: This study identifies a novel role for GALNT2 in energy homeostasis, and our findings suggest that the local effects of GalNAc-T2 are mediated through posttranslational modification of the insulin receptor.


Asunto(s)
Lipoproteínas HDL , Receptor de Insulina , Animales , Bovinos , Glicosilación , Homeostasis , Ratones , N-Acetilgalactosaminiltransferasas , Polipéptido N-Acetilgalactosaminiltransferasa
9.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34732583

RESUMEN

The SARS-CoV-2 coronavirus responsible for the global pandemic contains a novel furin cleavage site in the spike protein (S) that increases viral infectivity and syncytia formation in cells. Here, we show that O-glycosylation near the furin cleavage site is mediated by members of the GALNT enzyme family, resulting in decreased furin cleavage and decreased syncytia formation. Moreover, we show that O-glycosylation is dependent on the novel proline at position 681 (P681). Mutations of P681 seen in the highly transmissible alpha and delta variants abrogate O-glycosylation, increase furin cleavage, and increase syncytia formation. Finally, we show that GALNT family members capable of glycosylating S are expressed in human respiratory cells that are targets for SARS-CoV-2 infection. Our results suggest that host O-glycosylation may influence viral infectivity/tropism by modulating furin cleavage of S and provide mechanistic insight into the role of the P681 mutations found in the highly transmissible alpha and delta variants.


Asunto(s)
SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , Fusión Celular , Línea Celular , Furina/metabolismo , Células Gigantes , Glicosilación , Humanos , N-Acetilgalactosaminiltransferasas/metabolismo , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Polipéptido N-Acetilgalactosaminiltransferasa
10.
JBMR Plus ; 5(5): e10470, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33977199

RESUMEN

Hyperphosphatemic familial tumoral calcinosis (HFTC) is a rare autosomal recessive disorder caused by mutations in FGF23, GALNT3, KLOTHO, or FGF23 autoantibodies. Prominent features include high blood phosphate and calcific masses, usually adjacent to large joints. Dental defects have been reported, but not systematically described. Seventeen patients with HFTC followed at the National Institutes of Health underwent detailed clinical, biochemical, molecular, and dental analyses. Studies of teeth included intraoral photos and radiographs, high-resolution µCT, histology, and scanning electron microscopy (SEM). A scoring system was developed to assess the severity of tooth phenotype. Pulp calcification was found in 13 of 14 evaluable patients. Short roots and midroot bulges with apical thinning were present in 12 of 13 patients. Premolars were most severely affected. µCT analyses of five HFTC teeth revealed that pulp density increased sevenfold, whereas the pulp volume decreased sevenfold in permanent HFTC teeth compared with age- and tooth-matched control teeth. Histology revealed loss of the polarized odontoblast cell layer and an obliterated pulp cavity that was filled with calcified material. The SEM showed altered pulp and cementum structures, without differences in enamel or dentin structures, when compared with control teeth. This study defines the spectrum and confirms the high penetrance of dental features in HFTC. The phenotypes appear to be independent of genetic/molecular etiology, suggesting hyperphosphatemia or FGF23 deficiency may be the pathomechanistic driver, with prominent effects on root and pulp structures, consistent with a role of phosphate and/or FGF23 in tooth development. Given the early appearance and high penetrance, cognizance of HFTC-related features may allow for earlier diagnosis and treatment. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

11.
bioRxiv ; 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33564758

RESUMEN

The SARS-CoV-2 coronavirus responsible for the global pandemic contains a unique furin cleavage site in the spike protein (S) that increases viral infectivity and syncytia formation. Here, we show that O-glycosylation near the furin cleavage site is mediated by specific members of the GALNT enzyme family and is dependent on the novel proline at position 681 (P681). We further demonstrate that O-glycosylation of S decreases furin cleavage. Finally, we show that GALNT family members capable of glycosylating S are expressed in human respiratory cells that are targets for SARS-CoV-2 infection. Our results suggest that O-glycosylation may influence viral infectivity/tropism by modulating furin cleavage of S and provide mechanistic insight into the potential role of P681 mutations in the recently identified, highly transmissible B.1.1.7 variant.

12.
Glycoconj J ; 38(2): 145-156, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33068214

RESUMEN

O-glycosylation is a highly diverse and complex form of protein post-translational modification. Mucin-type O-glycosylation is initiated by the transfer of N-acetyl-galactosamine (GalNAc) to the hydroxyl group of serine, threonine and tyrosine residues through catalysis by a family of glycosyltransferases, the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (E.C. 2.4.1.41) that are conserved across metazoans. In the last decade, structural characterization of glycosylation has substantially advanced due to the development of analytical methods and advances in mass spectrometry. However, O-glycosite mapping remains challenging since mucin-type O-glycans are densely packed, often protecting proteins from cleavage by proteases. Adding to the complexity is the fact that a given glycosite can be modified by different glycans, resulting in an array of glycoforms rising from one glycosite. In this study, we investigated conditions of solid phase extraction (SPE) enrichment, protease digestion, and Electron-transfer/Higher Energy Collision Dissociation (EThcD) fragmentation to optimize identification of O-glycosites in densely glycosylated proteins. Our results revealed that anion-exchange stationary phase is sufficient for glycopeptide enrichment; however, the use of a hydrophobic-containing sorbent was detrimental to the binding of polar-hydrophilic glycopeptides. Different proteases can be employed for enhancing coverage of O-glycosites, while derivatization of negatively charged amino acids or sialic acids would enhance the identification of a short O-glycopeptides. Using a longer than normal electron transfer dissociation (ETD) reaction time, we obtained enhanced coverage of peptide bonds that facilitated the localization of O-glycosites. O-glycosite mapping strategy via proteases, cut-off filtration and solid-phase chemoenzymatic processing. Glycopeptides are enriched by SPE column, followed by release of N-glycans, collection of higher MW O-glycopeptides via MW cut-off filter, O-glycopeptide release via O-protease, and finally detected by LC-MS/MS using EThcD.


Asunto(s)
Glicopéptidos/análisis , Glicopéptidos/química , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos , Aminoácidos/química , Animales , Bovinos , Fraccionamiento Químico , Cromatografía Liquida , Fetuínas/análisis , Fetuínas/química , Fetuínas/metabolismo , Glicopéptidos/metabolismo , Glicosilación , Mucinas/análisis , Mucinas/química , Mucinas/metabolismo , Ácido N-Acetilneuramínico/química , Péptido Hidrolasas/química , Glándula Submandibular/química
13.
J Biol Chem ; 295(35): 12525-12536, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32669364

RESUMEN

Mucin-type O-glycosylation is an essential post-translational modification required for protein secretion, extracellular matrix formation, and organ growth. O-Glycosylation is initiated by a large family of enzymes (GALNTs in mammals and PGANTs in Drosophila) that catalyze the addition of GalNAc onto the hydroxyl groups of serines or threonines in protein substrates. These enzymes contain two functional domains: a catalytic domain and a C-terminal ricin-like lectin domain comprised of three potential GalNAc recognition repeats termed α, ß, and γ. The catalytic domain is responsible for binding donor and acceptor substrates and catalyzing transfer of GalNAc, whereas the lectin domain recognizes more distant extant GalNAc on previously glycosylated substrates. We previously demonstrated a novel role for the α repeat of lectin domain in influencing charged peptide preferences. Here, we further interrogate how the differentially spliced α repeat of the PGANT9A and PGANT9B O-glycosyltransferases confers distinct preferences for a variety of endogenous substrates. Through biochemical analyses and in silico modeling using preferred substrates, we find that a combination of charged residues within the α repeat and charged residues in the flexible gating loop of the catalytic domain distinctively influence the peptide substrate preferences of each splice variant. Moreover, PGANT9A and PGANT9B also display unique glycopeptide preferences. These data illustrate how changes within the noncatalytic lectin domain can alter the recognition of both peptide and glycopeptide substrates. Overall, our results elucidate a novel mechanism for modulating substrate preferences of O-glycosyltransferases via alternative splicing within specific subregions of functional domains.


Asunto(s)
Simulación por Computador , Proteínas de Drosophila/química , Glicopéptidos/química , Glicosiltransferasas/química , Empalme Alternativo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Glicopéptidos/genética , Glicosilación , Glicosiltransferasas/genética , Humanos , Isoenzimas/química , Isoenzimas/genética , Especificidad por Sustrato
14.
J Biol Chem ; 295(5): 1411-1425, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31882545

RESUMEN

The importance of the microbiome in health and its disruption in disease is continuing to be elucidated. However, the multitude of host and environmental factors that influence the microbiome are still largely unknown. Here, we examined UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase 3 (Galnt3)-deficient mice, which serve as a model for the disease hyperphosphatemic familial tumoral calcinosis (HFTC). In HFTC, loss of GALNT3 activity in the bone is thought to lead to altered glycosylation of the phosphate-regulating hormone fibroblast growth factor 23 (FGF23), resulting in hyperphosphatemia and subdermal calcified tumors. However, GALNT3 is expressed in other tissues in addition to bone, suggesting that systemic loss could result in other pathologies. Using semiquantitative real-time PCR, we found that Galnt3 is the major O-glycosyltransferase expressed in the secretory cells of salivary glands. Additionally, 16S rRNA gene sequencing revealed that the loss of Galnt3 resulted in changes in the structure, composition, and stability of the oral microbiome. Moreover, we identified the major secreted salivary mucin, Muc10, as an in vivo substrate of Galnt3. Given that mucins and their O-glycans are known to interact with various microbes, our results suggest that loss of Galnt3 decreases glycosylation of Muc10, which alters the composition and stability of the oral microbiome. Considering that oral findings have been documented in HFTC patients, our study suggests that investigating GALNT3-mediated changes in the oral microbiome may be warranted.


Asunto(s)
Calcinosis/metabolismo , Calcinosis/microbiología , Hiperostosis Cortical Congénita/metabolismo , Hiperostosis Cortical Congénita/microbiología , Hiperfosfatemia/metabolismo , Hiperfosfatemia/microbiología , Microbiota/genética , N-Acetilgalactosaminiltransferasas/metabolismo , Glándulas Salivales/metabolismo , Animales , Calcinosis/genética , Femenino , Factor-23 de Crecimiento de Fibroblastos , Glicosilación , Glicosiltransferasas/metabolismo , Hiperostosis Cortical Congénita/genética , Hiperfosfatemia/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mucinas/química , Mucinas/metabolismo , N-Acetilgalactosaminiltransferasas/genética , Polisacáridos/metabolismo , ARN Ribosómico 16S/genética , Polipéptido N-Acetilgalactosaminiltransferasa
15.
Proc Natl Acad Sci U S A ; 116(50): 25196-25202, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31740596

RESUMEN

Chronic kidney disease (CKD) affects more than 20 million Americans and ∼10% of the population worldwide. Genome-wide association studies (GWAS) of kidney functional decline have identified genes associated with CKD, but the precise mechanisms by which they influence kidney function remained largely unexplored. Here, we examine the role of 1 GWAS-identified gene by creating mice deficient for Galnt11, which encodes a member of the enzyme family that initiates protein O-glycosylation, an essential posttranslational modification known to influence protein function and stability. We find that Galnt11-deficient mice display low-molecular-weight proteinuria and have specific defects in proximal tubule-mediated resorption of vitamin D binding protein, α1-microglobulin, and retinol binding protein. Moreover, we identify the endocytic receptor megalin (LRP2) as a direct target of Galnt11 in vivo. Megalin in Galnt11-deficient mice displays reduced ligand binding and undergoes age-related loss within the kidney. Differential mass spectrometry revealed specific sites of Galnt11-mediated glycosylation within mouse kidney megalin/LRP2 that are known to be involved in ligand binding, suggesting that O-glycosylation directly influences the ability to bind ligands. In support of this, recombinant megalin containing these sites displayed reduced albumin binding in cells deficient for Galnt11 Our results provide insight into the association between GALNT11 and CKD, and identify a role for Galnt11 in proper kidney function.


Asunto(s)
Riñón/fisiopatología , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , N-Acetilgalactosaminiltransferasas/metabolismo , Insuficiencia Renal Crónica/metabolismo , alfa-Globulinas/genética , alfa-Globulinas/metabolismo , Animales , Endocitosis , Femenino , Glicosilación , Humanos , Riñón/metabolismo , Túbulos Renales Proximales/metabolismo , Ligandos , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Masculino , Ratones , Ratones Noqueados , N-Acetilgalactosaminiltransferasas/genética , Unión Proteica , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/fisiopatología , Proteína de Unión a Vitamina D/genética , Proteína de Unión a Vitamina D/metabolismo
16.
J Biol Chem ; 294(51): 19498-19510, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31690624

RESUMEN

Regulated secretion is a conserved process occurring across diverse cells and tissues. Current models suggest that the conserved cargo receptor Tango1 mediates the packaging of collagen into large coat protein complex II (COPII) vesicles that move from the endoplasmic reticulum (ER) to the Golgi apparatus. However, how Tango1 regulates the formation of COPII carriers and influences the secretion of other cargo remains unknown. Here, through high-resolution imaging of Tango1, COPII, Golgi, and secretory cargo (mucins) in Drosophila larval salivary glands, we found that Tango1 forms ring-like structures that mediate the formation of COPII rings rather than vesicles. These COPII rings act as docking sites for the cis-Golgi. Moreover, we observed nascent secretory mucins emerging from the Golgi side of these Tango1-COPII-Golgi complexes, suggesting that these structures represent functional docking sites/fusion points between the ER exit sites and the Golgi. Loss of Tango1 disrupted the formation of COPII rings, the association of COPII with the cis-Golgi, mucin O-glycosylation, and secretory granule biosynthesis. Additionally, we identified a Tango1 self-association domain that is essential for formation of this structure. Our results provide evidence that Tango1 organizes an interaction site where secretory cargo is efficiently transferred from the ER to Golgi and then to secretory vesicles. These findings may explain how the loss of Tango1 can influence Golgi/ER morphology and affect the secretion of diverse proteins across many tissues.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/embriología , Retículo Endoplásmico/fisiología , Regulación del Desarrollo de la Expresión Génica , Aparato de Golgi/fisiología , Vesículas Secretoras/fisiología , Animales , Animales Modificados Genéticamente , Sitios de Unión , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Glicosilación , Procesamiento de Imagen Asistido por Computador , Transporte de Proteínas , Interferencia de ARN , Glándulas Salivales/embriología
17.
J Biol Chem ; 294(34): 12579-12580, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31444307

RESUMEN

Natriuretic peptides (NPs) are hormones involved in maintaining heart health that undergo proteolytic cleavage to become activated. Previous work has shown that O-GalNAc glycans affect their processing and activation. Here, Goetze, Schjoldager, and colleagues now provide comprehensive characterization of O-glycosylation of NPs, revealing that all members of the NP family can be modified by O-GalNAc glycans. Intriguingly, the study discovers glycans in the receptor-binding region of the A-type natriuretic peptide (ANP), demonstrating that they affect both stability and activity of ANP. These results may inform future therapeutic approaches for heart failure using peptide glycoforms.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Péptidos Natriuréticos/metabolismo , Polisacáridos/metabolismo , Animales , Glicosilación , Humanos
18.
Curr Opin Struct Biol ; 56: 139-145, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30852302

RESUMEN

Glycosylation, or the addition of sugars to proteins, is a highly conserved protein modification defined by both the monosaccharide initially added as well as the amino acid to which it is attached. O-Linked glycosylation represents a diverse group of protein modifications occurring on the hydroxyl groups of serine and/or threonine residues. O-Glycosylation can have wide-ranging effects on protein stability and function, which translate into crucial consequences at the organismal level. This review will summarize structural and biological insights into the major O-glycans formed within the secretory apparatus (O-GalNAc, O-Man, O-Fuc, O-Glc and extracellular O-GlcNAc) from studies in the fruit fly Drosophila melanogaster. Drosophila has many advantages for investigating these complex modifications, boasting reduced functional redundancy within gene families, reduced length/complexity of glycan chains and sophisticated genetic tools. Gaining an understanding of the normal cellular and developmental roles of these conserved modifications in Drosophila will provide insight into how changes in O-glycans are involved in human disease and disease susceptibilities.


Asunto(s)
Drosophila melanogaster , Oxígeno/metabolismo , Acetilglucosamina/metabolismo , Animales , Espacio Extracelular/metabolismo , Glicosilación , Humanos
19.
Nat Commun ; 9(1): 3508, 2018 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-30158631

RESUMEN

Regulated secretion is an essential process where molecules destined for export are directed to membranous secretory granules, where they undergo packaging and maturation. Here, we identify a gene (pgant9) that influences the structure and shape of secretory granules within the Drosophila salivary gland. Loss of pgant9, which encodes an O-glycosyltransferase, results in secretory granules with an irregular, shard-like morphology, and altered glycosylation of cargo. Interestingly, pgant9 undergoes a splicing event that acts as a molecular switch to alter the charge of a loop controlling access to the active site of the enzyme. The splice variant with the negatively charged loop glycosylates the positively charged secretory cargo and rescues secretory granule morphology. Our study highlights a mechanism for dictating substrate specificity within the O-glycosyltransferase enzyme family. Moreover, our in vitro and in vivo studies suggest that the glycosylation status of secretory cargo influences the morphology of maturing secretory granules.


Asunto(s)
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Vesículas Secretoras/metabolismo , Animales , Drosophila , Proteínas de Drosophila/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Vesículas Secretoras/genética , Especificidad por Sustrato
20.
J Biol Chem ; 293(4): 1315-1316, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29374084

RESUMEN

Changes in the O-glycosylation of proteins have long been associated with the development of cancer, but establishing causal relationships between altered glycosylation and cancer progression remains incomplete. In this study, the authors perform comparative analyses of the cellular phenotypes, transcriptional changes, and alterations in the glycoproteome in colon cancer cells that differentially express one glycosyltransferase. Their results provide a wealth of data on which future studies can be based.


Asunto(s)
Neoplasias del Colon/metabolismo , Proteínas de Neoplasias/metabolismo , Animales , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Glicosilación , Humanos , Proteínas de Neoplasias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...